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Introduction to regular perturbation theory

Very often, a mathematical problem cannot be solved exactly or, if the exact solution is

available, it exhibits such an intricate dependency in the parameters that it is hard to use

as such. It may be the case, however, that a parameter can be identified, say ε, such that

the solution is available and reasonably simple for ε = 0. Then, one may wonder how this

solution is altered for non-zero but small ε. Perturbation theory gives a systematic answer

to this question.

Perturbation theory for algebraic equations. Consider the quadratic equation

x2 − 1 = εx. (1)

The two roots of this equation are

x1 = ε/2 +
√

1 + ε2/4, x2 = ε/2 −
√

1 + ε2/4. (2)

For small ε, these roots are well approximated by the first few terms of their Taylor series

expansion (see figure 1)1

x1 = 1 + ε/2 + ε2/8 + O(ε3), x2 = −1 + ε/2 − ε2/8 + O(ε3). (3)

Can we obtain (3) without prior knowledge of the exact solutions of (1)? Yes, using regular

perturbation theory. The technique involves four steps.

STEP A. Assume that the solution(s) of (1) can be Taylor expanded in ε. Then we have

x = X0 + εX1 + ε2X2 + O(ε3), (4)

for X0, X1, X2 to be determined.

STEP B. Substitute (4) into (1) written as x2 − 1 − εx = 0, and expand the left hand side

of the resulting equation in power series of ε. Using

x2 = X2
0 + 2εX0X1 + ε2(X2

1 + 2X0X2) + O(ε3),

εx = εX0 + ε2X1 + O(ε3),
(5)

1a(ε) = O(b(ε)) as ε → 0, (“a(ε) is big-oh of b(ε)”) if there exists a positive constant M such that |a(ε)| ≤ M|b(ε)|
whenever ε is sufficiently close to 0.
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Figure 1: The root x1 plotted as a function of ε (solid line), compared with the
approximations by truncation of the Taylor series at O(ε2), x1 = 1 + ε/2 (dotted line), and
O(ε3), x1 = 1 + ε/2 + ε2/8 (dashed line). Notice that even though the approximations are
a priori valid in the range ε � 1 only, the approximation x1 = 1 + ε/2 + x2/8 is fairly good
even up to ε = 2.

this gives

X2
0 − 1 + ε(2X0X1 − X0) + ε2(X2

1 + 2X0X2 − X1) + O(ε3) = 0. (6)

STEP C. Equate to zero the successive terms of the series in the left hand side of (6):

O(ε0) : X2
0 − 1 = 0,

O(ε1) : 2X0X1 − X0 = 0,

O(ε2) : X2
1 + 2X0X2 − X1 = 0,

O(ε3) : · · ·

(7)

STEP D. Successively solve the sequence of equations obtained in (7). Since X2
0 − 1 = 0

has two roots, X0 = ±1, one obtains

X0 = 1, X1 = 1/2, X2 = 1/8,

X0 = −1, X1 = 1/2, X2 = −1/8.
(8)

It can be checked that substituting (8) into (4) one recovers (3).

From the previous example it might not be clear what the advantage of regular

perturbation theory is, since one can obtain (3) more directly by Taylor expansion of the roots

in (2). To see the strength of regular perturbation theory, consider the following equation

x2 − 1 = εex. (9)
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Figure 2: The solid line is the graph of two (why two?) of the three solutions of (9)
obtained numerically and plotted as a function of ε (solid line). Also plotted are the
approximations by truncation of the Taylor series at O(ε2), x1 = 1 + εe/2 (dotted line), and
O(ε3), x1 = 1 + εe/2 + ε2e2/8 (dashed line) (see (14)).

The solutions of this equation are not available; therefore the direct method is inapplicable

here. However, the Taylor series expansion of these solutions can be obtained by

perturbation theory. We introduce the expansion (4) as in Step A. In Step B, we use (recall

that ez = 1 + z + z2/2 + O(z3))

εex = εeX0+εX1+ε2X2+O(ε3) = εeX0 eεX1+ε2X2+O(ε3) = εeX0 + ε2X1eX0 + O(ε3). (10)

Substituting this expression in (9) written as x2 − 1 − εex = 0 and using (5), we obtain

X2
0 − 1 + ε

(
2X0X1 − eX0

)
+ ε2

(
X2

1 + 2X0X2 − X1eX0

)
+ O(ε3) = 0. (11)

Thus, the sequence of equations obtained in Step C is

O(ε0) : X2
0 − 1 = 0,

O(ε1) : 2X0X1 − eX0 = 0,

O(ε2) : X2
1 + 2X0X2 − X1eX0 = 0,

O(ε3) : · · ·

(12)

from which we obtain (step D)

X0 = 1, X1 = e/2, X2 = e2/8,

X0 = −1, X1 = −1/(2e), X2 = −1/(8e2),
(13)
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Figure 3: The exact solution (17) (solid) line is compared with the approximations by
truncation of the Taylor series (see (18)) at O(ε) (dotted line), O(ε2) (dashed line), and O(ε3)
(indistinguishable from solid line).

or, equivalently,
x1 = 1 + εe/2 + ε2e2/8 + O(ε3)

x2 = −1 − ε/(2e) − ε2/(8e2) + O(ε3).
(14)

The expression for x1 is compared to the numerical solution of (9) on figure 2.

Remark: In fact (9) has three solutions for 0 < ε < ε1, with ε1 ≈ 0.43, and only one for ε > ε1.

The solution which exists for all ε > 0 is the one with expansion given in x2 in (14); the

solution with the expansion given in x1 in (14) disappears for ε > ε1; and the third solution

(see figure 2: the solid line is the graph of a two-valued function) cannot be obtained by

regular perturbation.

Exercise 1. Solve by perturbation

x2 − 4 = ε ln(x). (15)

Notice that, as ε → 0, (15) formally reduces to the equation x2 − 4 = 0, with two roots

x1,2 = ±2. (15) also has two solutions (why?). How are they related to x1,2 = ±2? Can

both solutions of (15) be obtained by perturbation?

Perturbation theory for differential equations. Consider

d2y
dτ 2 = −ε

dy
dτ

− 1, y(0) = 0,
dy
dτ

(0) = 1. (16)
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Recall that this equation governs the dynamics of a projectile thrown vertically into the air

if air friction is taken into account. Here ε = kV/(mg), where V is the initial velocity of

the projectile, m is its mass, k is the friction constant ([k] = MT−1) and g is the acceleration

from gravity. In (16), the altitude is measured in units of `1 = V2/g, and the time in units of

τ1 = V/g.

The exact solution of (16) is (can you show this?)

y(τ ) =
(1 + ε)

ε2

(
1 − e−ετ

)− τ

ε
. (17)

For 0 < ε � 1, which corresponds to a situation where air friction is small, we can

approximate y(τ ) by the first few terms of its Taylor series expansion in ε (see figure 3).

Using 1 − e−z = z − z2/2 + z3/3! + O(z4), we obtain

y(τ ) = τ − τ 2/2 + ε(−τ 2/2 + τ 3/6) + ε2(τ 3/6 − τ 4/24) + O(ε3). (18)

This expansion is uniformly valid in τ in the range 0 < τ � 1/ε, which is the range of

physical interest since the projectile hits the ground well before 1/ε if ε � 1 (see below).

We wish to obtain the expansion in (18) without prior knowledge of the exact

solution (17), using regular perturbation theory. We proceed similarly as for algebraic

equations.

STEP A. Introduce the expansion

y(τ ) = y0(τ ) + εy1(τ ) + ε2y2(τ ) + O(ε3), (19)

where y0(τ ), y1(τ ), y2(τ ) are functions of τ to be determined.

STEP B. Substitute (19) into (16) (differential equation and initial conditions) written as

d2y
dτ 2 + ε

dy
dτ

+ 1 = 0, y(0) = 0,
dy
dτ

(0) − 1 = 0,

and expand the resulting equations in power series of ε. This gives

d2y0

dτ 2 + 1 + ε

(
d2y1

dτ 2 +
dy0

dτ

)
+ ε2

(
d2y2

dτ 2 +
dy1

dτ

)
+ O(ε3) = 0,

y0(0) + εy1(0) + ε2y2(0) + O(ε3) = 0,

dy0

dτ
(0) − 1 + ε

dy1

dτ
(0) + ε2 dy2

dτ
(0) + O(ε3) = 0.

(20)
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STEP C. Equate to zero the successive terms of the series in the left hand side of (6):

O(ε0) :
d2y0

dτ 2 + 1 = 0, y0(0) = 0,
dy0

dτ
(0) − 1 = 0,

O(ε1) :
d2y1

dτ 2 +
dy0

dτ
= 0, y1(0) = 0,

dy1

dτ
(0) = 0,

O(ε2) :
d2y2

dτ 2 +
dy1

dτ
, y2(0) = 0,

dy2

dτ
(0) = 0,

O(ε3) : · · ·

(21)

STEP D. Successively solve the sequence of equations obtained in (21):

y0(τ ) = τ − τ 2/2, y1(τ ) = −τ 2/2 + τ 3/6, y2(τ ) = τ 3/6 − τ 4/24. (22)

Substituting (22) into (19) gives (18).

Exercise 2. Show that yn(τ ) = (−1)n(τ n+1/(n + 1)! − τ n+2/(n + 2)!).

Exercise 3. The maximum altitude reached by the projectile is y? := y(τ?), where τ? is the

time such that dy(τ?)/dτ = 0 (why?). From (17) we have

dy
dτ

=
(1 + ε)e−ετ

ε
− 1

ε
.

Hence

τ? =
ln(1 + ε)

ε
, (23)

and

y? = y(τ?) =
1
ε
− ln(1 + ε)

ε2 . (24)

For small ε, τ? and y? can be approximated by (recall that ln(1 + z) = z − z2/2 + z3/3 +

O(z4)),

τ? = 1 − ε/2 + ε2/2 + O(ε3), y? = 1/2 − ε/3 + ε2/4 + O(ε3). (25)

Re-obtain these expansions from (18) by perturbation theory.

Exercise 4. Check that (24) is consistent with the result we obtained for h using

dimensional analysis.

Exercise 5. Recall that in the high friction limit, the appropriate equation for the projectile

is
d2z
ds2 = −dz

ds
− δ, z(0) = 0,

dz
ds

(0) = 1, (26)

where δ := 1/ε = mg/(kV). Here the altitude is measured in units of `2 = Vm/k, and the time

in units of τ2 = m/k. Solve this equation by regular perturbation technique when 0 < δ � 1.
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What is the maximal altitude reached by the projectile? What is the time of the flight? What

is the ratio between the ascent and the descent times of the projectile?

Exercise 6. The dimensionless form of the equation for a perfect pendulum of length ` is

d2θ

dτ 2 = − sin(θ), θ(0) = φ,
dθ

dτ
(0) = 0,

where the time is measured in units of
√

`/g. Solve this equation by regular perturbation

when 0 < φ � 1. Is your approximation uniformly valid in time?


