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Introduction to regular perturbation theory

Very often, a mathematical problem cannot be solved exactly or, if the exact solution is
available, it exhibits such an intricate dependency in the parameters that it is hard to use
as such. It may be the case, however, that a parameter can be identified, say ¢, such that
the solution is available and reasonably simple for e = 0. Then, one may wonder how this
solution is altered for non-zero but small . Perturbation theory gives a systematic answer
to this question.

Perturbation theory for algebraic equations. Consider the quadratic equation
X2 —1=ex. (1)

The two roots of this equation are

X1 =¢/2+/1+¢e?/4, Xp =¢/2—/1+¢e2/4. 2)

For small ¢, these roots are well approximated by the first few terms of their Taylor series
expansion (see figure 1)!

X1 =14+¢/2+%/84+0(%), xo=-1+¢/2—e2/8+ O(). (3)

Can we obtain (3) without prior knowledge of the exact solutions of (1)? Yes, using regular
perturbation theory. The technique involves four steps.

STEP A. Assume that the solution(s) of (1) can be Taylor expanded in . Then we have
X = X0+€X1+52X2+O(53), (4)

for Xg, X1, X5 to be determined.

STEP B. Substitute (4) into (1) written as x> — 1 — ex = 0, and expand the left hand side
of the resulting equation in power series of €. Using
X2 = X3+ 2e XXy + £2(X2 42Xy X,) + O(e3), -
eX = eXg+ 2 Xy + O(ed),

a(e) = O(b(e)) as € — 0, (“a(e) is big-oh of b(e)”) if there exists a positive constant M such that |a(e)| < M|b(e)|
whenever ¢ is sufficiently close to 0.
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Figure 1: The root x; plotted as a function of e (solid line), compared with the
approximations by truncation of the Taylor series at O(c?), x; = 1 + /2 (dotted line), and
O(e®), x; = 1 +¢/2 + £2/8 (dashed line). Notice that even though the approximations are
a priori valid in the range € < 1 only, the approximation x; = 1 + /2 + x?/8 is fairly good
evenuptoe =2.

this gives
X3 — 14 e(@2XoX1 — Xo) + £2(XZ +2Xo Xy — X1) + O(e®) = 0. (6)

STEP C. Equate to zero the successive terms of the series in the left hand side of (6):

09 : X5—-1=0,

O(el) 2XoX1 — Xo =0, -
0O(e?) : X2 4+ 2XoXy — X3 =0,

O(e%) :

STEP D. Successively solve the sequence of equations obtained in (7). Since XS —-1=0
has two roots, Xq = £1, one obtains
Xo =1, Xy =1/2, X, =1/8, @
Xo=—1, X1=1/2, X, =—1/8.

It can be checked that substituting (8) into (4) one recovers (3).

From the previous example it might not be clear what the advantage of regular
perturbation theory is, since one can obtain (3) more directly by Taylor expansion of the roots
in (2). To see the strength of regular perturbation theory, consider the following equation

X —1=¢ee". 9
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Figure 2. The solid line is the graph of two (why two?) of the three solutions of (9)
obtained numerically and plotted as a function of ¢ (solid line). Also plotted are the
approximations by truncation of the Taylor series at O(¢?), x; = 1 + ce/2 (dotted line), and
O(®), x; = 1+ ce/2 + %2 /8 (dashed line) (see (14)).

The solutions of this equation are not available; therefore the direct method is inapplicable
here. However, the Taylor series expansion of these solutions can be obtained by
perturbation theory. We introduce the expansion (4) as in Step A. In Step B, we use (recall
thate? = 1+ z+22/2+ O(2%)

oX = geXoteXite X tO(E) = fgXogeXa e XetOE) = cpXo 4 22X %0 4 O(e9). (10)
Substituting this expression in (9) written as x> — 1 — eeX = 0 and using (5), we obtain
X2—1+¢ (2x0x1 - exo) 4 g2 (xf + 2XoXs — xlexo) +0O(3) =0. (11)

Thus, the sequence of equations obtained in Step C is

0% : X5—1=0,
oY) : 2Xo X1 —e%0 =0,
(€9 0X1 12)
0(52) . X% +2Xp Xy — XleXO =0,
0% :
from which we obtain (step D)
Xo =1, X1 =¢/2, X, = €%/8,
0 1=¢/ 2 / (13)

XO = _17 Xl = —1/(29), X2 = —1/(862),
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Figure 3. The exact solution (17) (solid) line is compared with the approximations by
truncation of the Taylor series (see (18)) at O(¢) (dotted line), O(e?) (dashed line), and O(c®)
(indistinguishable from solid line).

or, equivalently,
X1 =1+¢ee/2+%?/8 + O(e3)

X, = —1—¢/(2e) — 2 /(8e?) + O(%).

The expression for x; is compared to the numerical solution of (9) on figure 2.

(14)

Remark: In fact (9) has three solutions for 0 < ¢ < €4, with £, ~ 0.43, and only one for ¢ > ¢;.
The solution which exists for all € > 0 is the one with expansion given in x, in (14); the
solution with the expansion given in X, in (14) disappears for € > £1; and the third solution
(see figure 2: the solid line is the graph of a two-valued function) cannot be obtained by
regular perturbation.

Exercise 1. Solve by perturbation
x? — 4 = eIn(x). (15)

Notice that, as € — 0, (15) formally reduces to the equation x> — 4 = 0, with two roots
X1 2 = £2. (15) also has two solutions (why?). How are they related to x; , = +2? Can
both solutions of (15) be obtained by perturbation?

Perturbation theory for differential equations. Consider

d?y  dy _ dy oy
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Recall that this equation governs the dynamics of a projectile thrown vertically into the air
if air friction is taken into account. Here ¢ = kV/(mg), where V is the initial velocity of
the projectile, m is its mass, k is the friction constant ([k] = MT 1) and g is the acceleration
from gravity. In (16), the altitude is measured in units of /; = V2 /g, and the time in units of
. =V/g.

The exact solution of (16) is (can you show this?)

v =520 T an)

For 0 < ¢ <« 1, which corresponds to a situation where air friction is small, we can
approximate y(7) by the first few terms of its Taylor series expansion in ¢ (see figure 3).
Using 1 —e % =z — z2/2 + 2% /31 + O(z*), we obtain

y(r) =7 —1%/24 e(—1%/2 4 73/6) + £2(13 /6 — 74 /24) 4+ O(’). (18)

This expansion is uniformly valid in 7 in the range 0 < 7 < 1/¢, which is the range of
physical interest since the projectile hits the ground well before 1 /¢ if ¢ < 1 (see below).

We wish to obtain the expansion in (18) without prior knowledge of the exact
solution (17), using regular perturbation theory. We proceed similarly as for algebraic
equations.

STEP A. Introduce the expansion
y(7) = Yo(7) + ey1(7) + €%ya(7) 4+ O(%), (19)

where yo(7), Y1(7), y2(7) are functions of 7 to be determined.

STEP B. Substitute (19) into (16) (differential equation and initial conditions) written as

d? d d
iedri—0, yo=0 Fo-1-0
dr dr dr

and expand the resulting equations in power series of . This gives

2
M+1+ (MJFM)% <M+%>+O(s3):o,

dr2 dr2 dr dr? d
¥0(0) + ey1(0) + £2y2(0) + O(e%) = 0, (20)
dyo dy1 2dYZ

a4y O —14+e 20+ =(0) + O %) =0.
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STEP C. Equate to zero the successive terms of the series in the left hand side of (6):

2

o): I i1-0  yo=0, PD@_1-o
dr? dr
d? d d

och: X1 _g yo=0, L=o
dr dr dr (1)
d’y, dy; dy;

2\ - —-J4 — _Zc —
O(e%) :

STEP D. Successively solve the sequence of equations obtained in (21):
Yo(r) =7 —7°%/2, yi(1) = —1%/2 4 73/8, yo(1) = 73/6 — 14 /24. (22)
Substituting (22) into (19) gives (18).

Exercise 2. Show that yn(7) = (—1)"(="*1/(n 4 1)! — 72 /(n + 2))).

Exercise 3. The maximum altitude reached by the projectile is y, := y(,), where 7, is the
time such that dy(7,.)/d7 = 0 (why?). From (17) we have

dy (I4ee 1

dr € €
Hence
. In(1+5)7 (23)
€
and |
1 nl+e¢
Ve = Y(74) = = % (24)

For small ¢, 7, and y, can be approximated by (recall that In(1 +z) = z — z2/2 + 23 /3 +
O(z%),
T =1—¢/24%/2+ O(%), Yo =1/2—¢/3+e2/4+ O(3). (25)

Re-obtain these expansions from (18) by perturbation theory.

Exercise 4. Check that (24) is consistent with the result we obtained for h using
dimensional analysis.

Exercise 5. Recall that in the high friction limit, the appropriate equation for the projectile
?z__dz

ds2 ~ ds
where § :=1/e =mg/(kV). Here the altitude is measured in units of /, = Vm/k, and the time

dz

in units of 7, = m/k. Solve this equation by regular perturbation technique when 0 < § < 1.
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What is the maximal altitude reached by the projectile? What is the time of the flight? What
is the ratio between the ascent and the descent times of the projectile?

Exercise 6. The dimensionless form of the equation for a perfect pendulum of length £ is
d?6 . dé
gz =50, Q=0 (=0,
where the time is measured in units of /¢/g. Solve this equation by regular perturbation

when 0 < ¢ < 1. Is your approximation uniformly valid in time?



